A 3D engineered tumour for spatial snap-shot analysis of cell metabolism and phenotype in hypoxic gradients
نویسندگان
چکیده
The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional tumours. Here, we describe an engineered model to assemble three-dimensional tumours by rolling a scaffold-tumour composite strip. By unrolling the strip, the model can be rapidly disassembled for snapshot analysis, allowing spatial mapping of cell metabolism in concert with cell phenotype. We also show that the establishment of oxygen gradients within samples that are shaped by oxygen-dependent signalling pathways, as well as the consequential variations in cell growth, response to hypoxic gradients extending from normoxia to severe hypoxia, and therapy responsiveness, are consistent with those of tumours in vivo. Moreover, by using liquid chromatography tandem mass spectrometry, we mapped cellular metabolism and identified spatially defined metabolic signatures of cancer cells to reveal both known and novel metabolic responses to hypoxia.
منابع مشابه
Tissue Engineered Scaffolds in Regenerative Medicine
Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...
متن کاملModeling Breast Acini in Tissue Culture for Detection of Malignant Phenotype Reversion to Non-Malignant Phenotype
Backgrounds: Evidence is accumulating to support disruption of tissue architecture as a powerful event in tumor formation. For the past four decades, intensive cancer research with the premise of “cancer as a cell based-disease” focused on finding oncogenes or tumor suppressor genes. However, the role of the tissue architecture was neglected. Three dimensional (3D) cell cultures which can recap...
متن کاملBioprinting in Vascularization Strategies
Three-dimensional (3D) printing technology has revolutionized tissue engineering field because of its excellent potential of accurately positioning cell-laden constructs. One of the main challenges in the formation of functional engineered tissues is the lack of an efficient and extensive network of microvessels to support cell viability. By printing vascular cells and appropriate biomaterials,...
متن کاملIn vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine PET
Objective(s): The ability to measure cellular proliferation non-invasively in renal cell carcinoma may allow prediction of tumour aggressiveness and response to therapy. The aim of this study was to evaluate the uptake of 18Ffluorothymidine (FLT) PET in renal cell carcinoma (RCC), and to compare this to 18F-fluorodeoxyglucose (FDG), and to an immunohistochemical measure of cellular proliferatio...
متن کاملChloroquine Phosphate Metabolism and Gender-Based Phenotypic Analysis among Healthy Subjects’ Urine Following Oral Administration
The advent of chloroquine promising activity against the COVID-19 is novel and as such, it is imperative to thoroughly understand and determine the rate at which individual body systems handle the drug. Chloroquine a known antimalarial drug belongs to the chemical class of 4-aminoquinolines. The aim of the study was to analyze Chloroquine and its metabolite in biological fluids of healthy subje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2016